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ABSTRACT A growing body of literature has examined the potential of machine learning algorithms in
constructing social indicators based on the automatic classification of digital traces. However, as long as the
classification algorithms’ predictions are not completely error-free, the estimate of the relative occurrence
of a particular class may be affected by misclassification bias, thereby affecting the value of the calculated
social indicator. Although a significant amount of studies have investigated misclassification bias correction
techniques, they commonly rely on a set of assumptions that are likely to be violated in practice, which
calls into question the effectiveness of these methods. Thus, there is a knowledge gap with respect to the
assessment of misclassification bias’s impact on a specific social indicator formula without strict reference
to the number of classes. Moreover, given the erroneous nature of automatic classification algorithms, the
quality of a predicted indicator can be assessed not only using regression quality metrics, as was done in
existing literature, but also using correlation metrics. In this paper, we propose a simulation approach for
assessing the impact of misclassification bias on the calculated social indicators in terms of regression and
correlation metrics. The proposed approach focuses on indicators calculated based on the distribution of
classes and can process any number of classes. The proposed approach allows selecting the most appropriate
classification model for a particular social indicator, and vice versa. Moreover, it allows for assessment of
the optimistic level of correlation between the indicator calculated based on the results of the classification
algorithm and the true underlying indicator.

INDEX TERMS Misclassification bias, social indicators, classification, supervised machine learning,
computational social science, sentiment analysis, digital traces.

I. INTRODUCTION
Many studies in the social sciences are presently examin-
ing the potential of machine learning (ML) algorithms [1],
forming computational social science—the academic
sub-discipline concerned with computational approaches to
the social sciences. Digital trace data are of special interest
in the context of ML-based analysis, as the huge volume of
data makes it a significant challenge to analyze it manually.
According to Howison et al. [2], digital trace data are found
(rather than produced for research), event-based (rather than
summary data), and longitudinal (since events occur over a
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period of time) data that are both produced through and stored
by an information system. These characteristics make digital
traces an ideal source for building social indicators defined
by Ferriss [3] as statistical time series ‘‘used to monitor
the social system, helping to identify changes and to guide
intervention to alter the course of social change.’’ A typical
example of social indicators constructed using ML analysis
is the estimation of subjective well-being (SWB) based on
user-generated content from social media, by employing an
ML model trained to classify the sentiment of posts [4], [5].
From a practical point of view, a classification algorithm
is commonly used to classify digital traces to the classes
of interest; then, based on the distribution of these classes,
an indicator is calculated for the entire population [6].
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However, as long as the ML algorithm’s predictions are
not completely error-free (we will hereinafter refer to this
phenomenon as misclassification bias), the estimate of the
relative occurrence of a particular class can be biased [7]–[9].
The key issue here is that optimal individual digital trace
classification can lead to biased estimates of the digital trace
class proportions and, subsequently, biased estimation of
a social indicator. Generally accepted success criteria for
classification, such as accuracy and F-measure on a test
dataset [10], are appropriate for individual-level classification
but can be seriously misleading when characterizing docu-
ment populations or dynamic within populations [11]. For
example, Zunic et al. [4] conducted a survey on sentiment
analysis in health and well-being studies and found that the
average classification accuracy for sentiment analysis was
around 80%. It can be considered an acceptable classification
performance for sentiment analysis, but suppose that all the
misclassified objects were in a particular direction for one
or more class. In that case, the statistical bias in using this
method to estimate the aggregate quantities of interest could
be as high as 20 percentage points. Moreover, if we take into
account that, furthermore, the target social indicator is some-
how calculated on the basis of the obtained proportions, then
the deviation of the calculated indicator from the true indica-
tor valuemay remain unchanged or change both up and down,
adding another degree of uncertainty. As was highlighted in
the measurement error studies [12] by the US Department of
Education, all data collections errors, including misclassifi-
cation errors, affect the final value of the calculated indicator
depending on the specific formula of interest. Researchers
have repeatedly reported cases where, because of errors in the
data, including incorrect classification, the research results
contained data that did not fully correspond to the real state
of affairs. For example, Wolff et al. [13] examined data error
in health, education, and income statistics used to construct
the Human Development Index and found that up to 34% of
countries were misclassified. By replicating prior studies, the
authors showed that key estimated parameters varied by up
to 100% due to data errors. Other papers also indicated errors
in aggregate statistical data for suicide [14], disability [15],
mortality [16], and life satisfaction [17]. Thus, despite the
fact that many studies have examined methods of correcting
classification bias [9], [11], we can conclude based on pre-
viously mentioned cases that it is essential to analyze this
bias together with a mathematical formula1 for calculating
the indicator for social indicators research. Also, even though
the influence of the classification bias on the classification
results has been indicated in the literature, to the best of our

1As an example of a mathematical formula, we can consider the formula
for educational attainment of 30–34 year olds described in the ETF Manual
on the Use of Indicators [18]. Educational attainment refers to the highest
educational level achieved by individuals expressed as a percentage of all
persons in that age group. Mathematically, the formula is defined as follows.

population 30–34 years old with tertiary education
total population 30–34 years old

∗ 100%

.

knowledge, the impact of the misclassification bias on the
calculated social indicators has not yet been assessed.

This paper provides a simulation approach for estimation
of the impact of misclassification bias on the calculated
social indicators. In this paper, we considered only indicators
calculated based on the distribution of classes without any
restrictions on the number of classes. The contributions of
this study is five-fold.
• We propose a simulation approach for assessing the
impact of misclassification bias on the calculated social
indicators, which can be used for the following purposes:
- - Selecting the most appropriate classification model

for a particular social indicator and vice versa.
- - Assessing the level of correlation between the indi-

cator calculated based on the results of classifica-
tion algorithm and true underlying indicator being
inherited.

• Within the proposed simulation approach, we also define
a formal model of online social data for social indicators
research, which can be further used by academics.

• Within the proposed simulation approach, we also pro-
pose a method for approximation of predicted indica-
tor based on the algorithm’s confusion matrix and true
indicator.

• Within the proposed simulation approach, we also pro-
pose a method for aggregation and interpretation of
multiple correlation coefficients with p-values.

• We provide illustrative application examples of the
proposed simulation approach and making conclusions
based on the simulation outcomes.

Considering that the proposed simulation approach relies
on a series of assumptions—as defined further (see
assumptions 1, 2, and 3)—that can be violated in practice, the
outcomes of the approach for real-life studies should be con-
sidered as naive and optimistic. However, we believe that this
study contributes to the body of knowledge on computational
social sciences and lays the foundation for future research
on the impact of misclassification bias on calculated social
indicators.

This article is organized as follows. In Section II, we pro-
vide a brief overview of simulation modeling. In Section III,
we describe the literature analysis and indicate the knowledge
gap. In Section IV, we propose a model for social indicators
research based on digital traces. In Section V, we propose
a simulation approach for assessing the impact of misclas-
sification bias on social indicators research. In Section VI,
we provide an illustrative example of applying the proposed
approach to synthetic and real-life classification algorithms.
Finally, in Section VII, we draw conclusions and suggest
future research directions.

II. BACKGROUND
Simulation modeling is a special kind of mathematical mod-
eling in which the system under study is replaced by a model
describing the real system with sufficient accuracy, with
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which further experiments are conducted to obtain informa-
tion about this system. In other words, a simulation model
attempts to approximate a system’s behavior and develop-
ment over time by running a model [19]. Simulation models
tend to be simplified abstractions of the system being mod-
eled, the purpose of which is to capture a certain level of
detail necessary to achieve the objectives of the study [20].
Simulation modeling is commonly used in such cases when
a real system cannot be engaged, the analytical description
cannot be formulated, or creating an analytical model is
fundamentally impossible. In a broader sense, computer sim-
ulation attempts to approximate the behavior of a system and
its development over time by implementing and running a
computer simulation model. By changing the conditions and
variables in the implemented simulation model, researchers
can make predictions about the behavior of the simulated sys-
temwithout having to implement the entire system. Computer
simulations are commonly used when performing system
emulation is challenging or when it is necessary to emulate
a system as part of more complex environment [20].

The literature has already describedmany examples of sim-
ulation models for systems of varying complexity [21]–[25],
with which experiments are carried out to obtain informa-
tion about these systems. In each study, the performance
metrics of a simulation model were deeply related to the
system being simulated and the goals of the simulation. For
example, Gunal and Pidd [21] simulated the Accident and
Emergency (A&E) Department at UK Hospitals and defined
a performance measure as the percentage of patients who
stayed in A&E more than 4 hours. Memon et al. [23] simu-
lated blockchain systems and defined performance measures
as the number of transactions per block, mining time of each
block, system throughput, memorypool count, waiting time
in memorypool, number of unconfirmed transactions in the
whole system, total number of transactions, and number of
generated blocks. Chan and Zhang [24] simulated a supply
chain and defined a performance measure as the retailer’s
total cost. Thus, when creating a simulation model, it is also
necessary to determine the key objectives to be achieved and
the metrics to be obtained.

III. RELATED WORK
Correct classification of individuals, values, and attributes is
an essential element of any study. Misclassification occurs
when an individual, a value, or an attribute is assigned to
a category other than that to which it should be assigned.
This erroneous classification can lead to incorrect associa-
tions being observed between the assigned categories and
the outcomes of interest [26], thereby biasing inferences
drawn from the data collected [27], often substantially [28],
or decreasing the power of the study [29]. As highlighted
by Kloos et al. [9], misclassification bias occurs in a broad
range of applications, including epidemiology [30], political
science [31], and official statistics [32]. The objective of these
applications is to shift focus from minimizing loss functions
at the level of individual predictions to the level of aggregated

predictions. In the context of ML, this objective is studied
under quantification learning. Quantification learning aims to
provide an aggregate estimation for unseen data by applying
a model trained using a training dataset with a different
data distribution [33]. However, there are certain drawbacks
associated with the use of quantification learning in real-life
studies. Firstly, the researchers note that since quantification
learning is at an early stage of development, a more com-
prehensive theoretical analysis is required to better formulate
both behavior of these algorithms and the learning objective
in general [33], [34]. Secondly, although most of the efforts
have focused on tackling binary quantification, quantification
for more than two classes remains under-explored [33]. This
is crucial for real-life applications: in a significant amount of
cases, there are more than two classes of interest. Lastly, there
is a lack of proper benchmark datasets for quantification [33].
Quantification studies require relatively large training and
test datasets to train the model and obtain meaningful results
and conclusions [9], [33]. In the studies mentioned above,
data annotation tends to be expensive, and therefore there are
little ready-made annotated data. Thus, much work remains
to be done by the scientific community to freely apply quan-
titative learning to real-life research.

At the same time, a growing body of literature has
investigated methods to reduce misclassification bias when
aggregating categorical data from the level of individual
predictions. For example, Hopkins et al. [11] explored new
methods of automated content analysis designed to estimate
the primary quantity of interest in many social science appli-
cations. As a part of the research, they also highlighted that
misclassification bias may significantly affect the distribution
of predicted classes. The authors proposed a classify-and-
count method that gives approximately unbiased estimates
of category proportions based on misclassification probabil-
ities for each class—adjusting the distribution of predicted
classes by confusion matrix normalized over rows. How-
ever, as shown later byKloos et al. [9], the classify-and-count
estimator is still (strongly) biased, so its application does
not provide an unbiased estimate. In their paper, the authors
also studied five existing estimation techniques to reduce
the misclassification bias of binary classification algorithms.
These methods for misclassification bias correction are com-
monly based on the assumption that misclassifications are
independent across objects and that their probabilities are the
same for each object. This assumption is often violated in
practice, as misclassification in ML models is not random
but tied to some separate groups of objects that are difficult
for the model to separate from each other. This violation was
partially confirmed in the study by Soroka et al. [35], which
identified that different sentiment lexicons capture different
underlying phenomena and highlighted ‘‘the importance of
tailoring lexicons to domains to improve construct validity.’’
As a consequence, the use of suchmethods can lead to the bias
caused by misclassification being replaced by another bias
caused by the application of the correction method. As Arm-
strong [36] mentioned, these methods can be complicated to
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use, however, and should be used cautiously because ‘‘cor-
rection’’ can magnify confounding if it is present. Moreover,
although the majority of these methods focus on misclassi-
fication bias correction for two classes, real-life studies are
commonly interested in more than two classes.

However, there has thus far been little discussion about
the impact of misclassification bias on the specific social
indicator formula rather than class proportions. We argue that
these objectives should be treated separately, since not all
classes may be taken into account in the target formula, and
misclassifications between certain classes may compensate
for each other to some extent. An absolutely accurate assess-
ment of the quality of a social indicator calculated based on
the results of automatic classification (hereinafter referred to
as predicted indicator) is possible only if there is access
to the true underlying value of the indicator (hereinafter
referred to as true indicator), obtained using a completely
correct classification approach. Manual data labeling is now
considered the benchmark in ML, and in almost all cases,
researchers try to train their models to classify data just as
accurately. Thus, classes obtained using manual annotation
with high-quality guidelines2 and a high inter-rater agree-
ment can be considered as practically the only3 source of
completely correct classification. However, since in the com-
putational social sciences, the automatic analysis of a huge
amount of data is of great interest, it is not only extremely
difficult and time-consuming to annotate all the data man-
ually in practice, but in the first place it is also extremely
expensive. But even with enough annotated data, researchers
may experience model overfitting when training a model.
Overfitting is a fundamental challenge in supervised ML that
prevents researchers from perfectly generalizing the models
to sufficiently fit observed data on training data and unseen
data on the testing set [38]. Due to the presence of overfitting,
the model tends to work perfectly on the training set but does
not fit well on the test set. Core to model training are appro-
priate ways for data splitting or resampling: the final training
parameters we must be chosen only after evaluating a num-
ber tuning parameters via data splitting or resampling [39].
In particular, cross-validation is one of the most widely used
data resampling methods to estimate the true prediction error
of models and to tune model parameters, thereby preventing
model overfitting [40]. The cross-validation procedure has a
single parameter called k that refers to the number of groups
that a given data sample is to be split into. As such, this pro-
cedure is often referred to as k-fold cross-validation. Various

2By high-quality annotation guidelines, we mean, at a high level, guide-
lines that allow performing an annotation in such a way that the resulting
annotation completely matches the true underlying quantitative or quantita-
tive parameter being annotated. The exact definition of high-quality annota-
tion guidelines and criteria for assessing the quality of guidelines lies outside
of the scope of this paper.

3In theory, a ML model with 100% accuracy can also serve as a source of
completely correct classes, provided that it was trained on a representative,
high-quality training dataset. However, in practice, it is not only extremely
difficult to achieve 100% accuracy of themodel but there is evidence [37] that
predictive models with a given level of accuracy may have greater predictive
power than models with higher accuracy.

other strategies for addressing overfitting can be found in the
recent survey papers [38], [41], [42] on that topic. It should
also be noted that existing misclassification bias correction
methods use primarily regression quality metrics to assess
their performance, such as mean absolute error (MAE) or
mean squared error (MSE). However, given the erroneous
nature of the existing algorithms for automatic classification,
interest for research may not be so much the absolute corre-
spondence of the index calculated based on the predictions
to the true underlying one, but rather their correlation. In this
case, based on the results of the study, it will not be entirely
correct to draw conclusions about the absolute values of the
indicator, but it will be possible to analyze its changes over
time. Thus, there is a knowledge gap regarding the assessment
of the impact of misclassification bias on a specific social
indicator formula 4 without strict reference to the number of
classes. Moreover, given the erroneous nature of automatic
classification algorithms, the quality of a predicted indicator
can be assessed not only using regression quality metrics,
but also with correlation metrics. Based on these findings,
we propose a simulation approach for assessing the impact
of misclassification error on a particular social indicators
formula, given the algorithm classification performance and
the information about data available for analysis.

IV. MODEL
In this Section, we propose a model for social indicators
research based on digital traces. We applied classical set
theory to develop our model, as recent literature [43], [44]
articulated a series of its advantages in the case of computa-
tional social sciences.

A. CONCEPTUAL MODEL
The Online Social Data Model for Social Indicators
Research consists of three elements: Digital Traces, Clas-
sification, and Indicators. The Digital Traces represent the
source data found for the analysis, which are event-based and
longitudinal, thus suitable for construction social indicators.
The Classification represent the automated approaches for
digital trace object classification based on ML methods. The
Indicators represent a methodology for calculating social
indicators based on classification results and estimating its
quality. When constructing the model, we assumed that the
source digital traces for the analysis are representative of
the general population, so no additional sampling methods
should be applied. As a consequence, all information about
individuals can be omitted.

B. FORMAL MODEL
The Online Social Data Model for Social Indicators
Research is defined as a tupleOSDMSIR = (DT ,C, I ) where
• DT is the Digital Traces representing the source digital
traces for the analysis,

4Hereinafter, wemean some specificmathematical formula for calculating
the social indicator.
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• C is the Classification representing ML components,
allowing mapping of digital traces to corresponding
classes of scientific interest, and

• I is the Indicators representing social indicators of
interest that should be computed within a particular
social indicators research.

The Digital Traces of the Online Social Data Model for
Social Indicators Research is defined as a tuple DT =

(TI ,X ,→interval), where
• TI = {ti0, ti1, . . . , tiK } is an ordered set of K ∈ N non-
overlapping time intervals such as tii < tii+1,

• X = {x1, x2, . . . , xN } is a finite set of N ∈ N digital
trace objects, and

• →interval : TI → Pdisj(X ) is a partial function mapping
time intervals to mutually disjoint non-empty subsets of
digital traces created in that time interval.

A subset of digital trace objects created in the time interval
tii will be hereinafter referred to as Xtii , i.e.→interval (tii) =
Xtii . The number of items in a subset Xtii will be hereinafter
referred to as Ntii ∈ N.

The Classification of the Online Social Data Model for
Social Indicators Research is defined as a tuple C =

(Y , fT , fP,CM ), where
• Y = {y1, y2, . . . , yM } is a finite set ofM ∈ N classes,
• fT : X → Y is a true mapping function,
• fP : X → Y is an algorithm approximating the mapping
function f (i.e., classification model), and

• CM ∈ N0
M×M is a confusion matrix for the algo-

rithm fP.
The Indicators of the Online Social Data Model for Social

Indicators Research is defined as a tuple I = (TSI ,QM ,
AQM ), where
• TSI = {Iti1 , Iti2 , . . . , ItiK } ∈ RK is a vector representing
time series indicator, where Itii : Y

Ntii → R is an
indicator function mapping a set of Ntii ∈ N0 classified
digital traces created in time interval tii to an indicator
value,

• QM = {qm1, qm2, . . . , qmU } is a set of U target quality
measures where each item represents a function qmi :
(RK
× RK ) → Rl returning a vector of K ∈ N0 real

numbers, and
• AQM = {aqm1, aqm2, . . . , aqmU } is a set of U ∈ N
aggregated target quality measures where each i-th item
represents an aggregation function suitable for qmi and
defined as aqmi : (RL)V → RH , where L ∈ N is the
number calculated target quality measures to be aggre-
gated and H ∈ N is the size of the vector representing
the aggregated target quality measure.

A particular target quality measure function qmi can be rep-
resented in a variety of ways depending on the needs of the
particular social indicators research—for example, MAE for
identifying deviation of the approximated indicator from the
true indicator, or the Pearson correlation coefficient (Pear-
son’s r) for identifying correlation between those indicators.
As a consequence, it returns a vector of real numbers since

difference quality measure may return different number of
values (e.g., it may contain one value in the case of MSE and
two values representing the confidence interval in the case
of Pearson’s r). The aggregated target quality measure aqmi
returns a vector of H real numbers because the aggregation
approach may vary depending on the target quality mea-
sure qmi and specifics of the research (e.g., macro-averaging
can be applied for MAE, resulting in a one-dimensional
vector, and the confidence interval can be calculated based
on Fisher z-transformation for Pearson’s r , resulting in a
two-dimensional vector).
TSI calculated based on mapping function fT will be fur-

ther referred to as TSIT . TSI calculated based on the algorithm
fP will be referred to as TSIP.

C. PROBLEM STATEMENT
In terms of defined notations, the problem statement for the
estimation of the impact of misclassification bias on the cal-
culated social indicators can be defined in the following way.
Given a trained classification model fP and its error matrix on
a test datasetCM , data for analysis X , an indicator calculation
formula I , and formulas for the target quality metric qmi
and aggregated target quality metric aqmi, it is necessary to
estimate the classification bias AQm.

V. SIMULATION APPROACH FOR ASSESSING THE
IMPACT OF MISCLASSIFICATION BIAS ON SOCIAL
INDICATORS RESEARCH
As mentioned earlier, the assessment of the impact of mis-
classification bias on calculated social indicators is possible
only if there is access to the true value of the indicator,
obtained using a completely correct classification approach.
In our approach, we propose to simulate the true indicator,
then, on its basis, approximate the results of the classification
algorithm, and then calculate the quality metrics. Formally,
the proposed approach consists of three steps.

1) Simulate the true indicator TSIT by simulating true
mapping function fT .

2) Approximate the predicted indicator TSIP by approx-
imating an algorithm fp based on the true mapping
function fT .

3) Calculate the quality qmi of the predicted indicator
TSIP for multiple simulations, and then calculate the
aggregated quality score aqmi.

The proposed approach is based on the following
assumptions.
Assumption 1: The training data for the classification

model was labeled manually using high-quality guidelines,
and the annotators demonstrated a high inter-rater agreement
score.
Consequently, we can consider that all digital traces in the
training dataset were assigned with class labels that com-
pletely match the true underlying parameter being annotated.
Assumption 2: The classificationmodel was trained on the

training data representative of the digital traces available for
analysis.
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This assumption in combination with assumption 1 allows
us to consider that class distribution in the digital traces
available for analysis is equal to class distribution in the
training dataset.
Assumption 3: (Mis)classifications are independent across

objects, and the (mis)classification probabilities are the same
for each object, conditional on their true class label.
Consequently, we could use a confusion matrix for approx-
imating the predicted index based on true index using the
inverse classify-and-count approach [11] for misclassifica-
tion bias correction.

Taking into account the simulation and approximation
nature of the proposed approach, as well a set of applied
assumptions that can be violated in practice, the outcomes
of the approach for real-life studies should be considered as
naive and optimistic. In other words, we recommend consid-
ering the outcomes as an optimistic assessment representing
the best case in real-life studies, provided it is not possible to
prove the fulfillment of all assumptions.

A. TRUE INDICATOR SIMULATION
Since both true and predicted indicators are calculated based
on the number of objects mapped to specific classes for each
time interval, the simulated data for each time interval are a
vector with a dimension equal to the number of classes, and
it is defined as follows:

SCDtii = (scdtii,y1 , scdtii,y2 , . . . , scdtii,yM ) ∈ N0
M ,

M∑
j=1

scdtii,j = Ntii . (1)

Also, the simulated data can be presented as a time series

STSyi,TI = (scdti1,yi , scdti2,yi , . . . , scdtiK ,yi ) ∈ N0
K , (2)

where each element scdtii,yj represents the number of digital
traces contained in time interval tii and labeled as a class yj.
Since the true indicator is unknown, we propose to synthet-
ically generate the number of objects of each class for each
analyzed time interval and calculate the true indicator TSIT
based on the generated data. Considering that the distribution
in the digital traces available for analysis is equal to class
distribution in the training dataset (see assumption 2), we can
expect the simulated data to satisfy the following condition:∑K

j=1 scdtij,yi∑M
o=1

∑K
j=1 scdtij,yo

=

∑M
j=1 cmyi,yj∑M

o=1
∑M

j=1 cmyo,yj
, (3)

where cmyi,yj is the number of objects with true class yi
classified as yj, as further defined in Eq. (4). At the same
time, we do not expect class distribution for a specified time
interval to be equal to the class distribution in the training
dataset, since according to assumption 2, the training dataset
is representative of the whole set of data available for the
analysis but not necessarily of a particular slice of these data.

In essence, this means that we simulate behavior of the
mapping function fT . For each time interval, the total number

of generated objects should not exceed the number of objects
contained in the data for analysis during the same time inter-
val. SCDtii generated for the calculation of true indicator will
be hereinafter referred to as SCDT ,tii .

B. PREDICTED INDICATOR APPROXIMATION
Once the true mapping function is defined and the true indica-
tor is calculated, we must define an algorithm approximating
true mapping function (i.e., classification model) fP. In other
words, we need to correct misclassification bias. To begin
with, we need estimates of the algorithm’s (mis)classification
probabilities. Following [45], we assume that misclas-
sifications are independent across objects and that the
(mis)classification probabilities are the same for each object,
conditional on their true class label. The (mis)classification
probabilities for each class are estimated via confusionmatrix
normalized over true classes, which is calculated based on a
confusion matrix CM . After that, we must adjust the true
classes distribution SCDT ,tii by (mis)classification probabili-
ties to acquire the approximate predicted classes distribution.
A similar approach has been widely used in the literature [9],
[11] but only for the inverse problem—to correct the classifi-
cation bias from the already predicted classes.

The confusion matrix can be presented as

CM=


cmy1,y1 cmy1,y2 · · · cmy1,yM
cmy2,y1 cmy2,y2 · · · cmy2,yM
...

...
. . .

...

cmyM ,y1 cmyM ,y2 · · · cmyM ,yM

 ∈ N0
M×M ,

(4)

where each row of the matrix represents the instances in an
actual class, and each column represents the instances in a
predicted class. An asterisk refers to whole rows or columns
in a matrix. For example, cmi,∗ refers to the i-th row of CM ,
and cm∗,j refers to the j-th column of CM .

cmyi,y∗ =
(
cmyi,y1 cmyi,y2 · · · cmyi,yM

)
. (5)

cmy∗,yj =
(
cmy1,yj cmy2,yj · · · cmyM ,yj

)T
. (6)

A confusion matrix normalized over true classes can be fur-
ther calculated as follows:

CMntc

=



1∑
cmy1,y∗

0 · · · 0

0
1∑
cmy2,y∗

· · · 0

...
...

. . .
...

0 0 · · ·
1∑

cmyM ,y∗


× CM

=


cmntcy1,y1 cmntcy1,y2 · · · cmntcy1,yM
cmntcy2,y1 cmntcy2,y2 · · · cmntcy2,yM
...

...
. . .

...

cmntcyM ,y1 cmntcyM ,y2 · · · cmntcyM ,yM

 ∈ RN×N (7)
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Assuming that ourmodel is unbiased toward a specific type
of errors (i.e., the probability of a model to make a error
is distributed randomly) and always follows a given confu-
sion matrix CM , we can approximate the non-normalized
confusion matrix of our model for a simulated data as
follows:

CM ′

=


scdT ,tii,y1 0 · · · 0

0 scdT ,tii,y2 · · · 0
...

...
. . .

...

0 0 · · · scdT ,tii,yM

× CMntc

=


cm′1,1 cm′1,2 · · · cmntc1,M
cm′2,1 cm′2,2 · · · cm′2,M
...

...
. . .

...

cm′M ,1 cm′M ,2 · · · cm′M ,M

 ∈ N0
N×N ,

M∑
o=1

cm′yj,yo = scdT ,tii,yj (8)

Note that the normalized confusion matrix CMnte operates
with R, whereas the non-normalized confusion matrix oper-
ates with N0, so it is necessary to round the results of matrix
multiplication and randomly adjust them to meet the target
class distribution if necessary.

The simulated distribution of predicted classes based on
simulated true classes distribution SCDT ,tii for a given time
interval tii is as follows:

SCDP,tii = (
M∑
j=1

cm′yj,y1 ,
M∑
j=1

cm′yj,y2 , . . . ,
M∑
j=1

cm′yj,yM )

∈ N0
M

M∑
j=1

scdP,tii,yj = Ntii (9)

C. QUALITY ASSESSMENT
Finally, we can calculate YNtii (i.e., a set of Ntii classified
objects created in time interval tii to an indicator value) based
on obtained class distributions SCDT ,tii and SCDP,tii for fur-
ther calculation of the true indicator and predicted indicator,
respectively. Since the order of the items in YNtii is not impor-
tant, we can define the order of items in anyway following our
class distributions. After that, we can calculate TSIT , TSIP,
and qmi. By repeating the entire procedure multiple times,5

we can obtain multiple qmi and calculate aqmi.
However, if for such metrics as MAE and MSE the aggre-

gation methods are well defined (for example, it can be a
simple average value), then the correlation aggregation tends
to be a more challenging task to accomplish. Note that in
the case of correlation analysis of time series, it is important
to check that these time series are stationary, and if they are

5Determining the number of required simulation runs lies outside the
scope of this paper. For more information on this topic, please refer to [46].

not, then apply some technique to make them stationary (e.g.,
differencing). Moreover, in this section we assumed that the
analyzed time series are stationary.

Furthermore, the method of aggregating Pearson’s or
Spearman’s correlation coefficients is presented. Thismethod
consists of two parts: aggregation of correlation coefficients
and aggregation of p-values.

1) AGGREGATION OF CORRELATION COEFFICIENTS
For combining Pearson or Spearman correlations, we pro-
pose to use the aggregation method based on Fisher
z-transformation described in [47]. Let pi denote an estimate
of the Pearson or Spearman correlation in study i and ni
denote the number of observations in study i. An estimate of
the average study population correlation is defined as follows.

p = m−1
n∑
i=1

pi (10)

An estimate of the variance is defined as follows.

var(p) = m−2
n∑
i=1

var(pi), (11)

where var(pi) is the variance for a particular correlation.
Variance for Pearson correlation is defined as follows.

var(pi) =
(1− p2i )

2

ni − 3
. (12)

Variance for Spearman correlation is defined as follows.

var(pi) =
(1− p2i )

2(1+ pi
2 )

ni − 3
. (13)

An approximate two-sided (1 − α)% confidence interval for
the average study population correlation is

CIcorr = tanh(arctan(p)± z

√
var(p)

(1− p2)2
), (14)

where z is the 1 − α
2 quantile of a standard normal dis-

tribution (i.e., the probit) corresponding to the target error
rate α. This method should use all Spearman correlations
or all Pearson correlations because these correlations are not
comparable [47].

2) AGGREGATION OF P-VALUES
According to Heard and Rubin-Delanchy [48], there are six
most fundamental or commonly used statistics for combining
p-values: Fisher’s method (SF =

∑n
i=1 log pi) [49], Pear-

son’s method (SP = −
∑n

i=1 log(1 − pi)) [50], George’s
method (SG = SF + SP =

∑n
i=1 log(pi/(1 − pi))) [51],

Edgington’s method (SE =
∑n

i=1 pi) [52], Stouffer’s method
(SS =

∑n
i=18

−1(pi)) [53], where 8 is the standard nor-
mal cumulative distribution function, and Tippett’s method
(ST = min(p1, p2, . . . , pn)) [54]. Although each method is
optimal in some setting, all of them can be considered as strict
methods tending to reject a hypothesis if even a very small
part of the tests did not show the specified level of statistical
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significance. Given that the approximation algorithm is not
error-free and simulations can be repeated an infinite num-
ber of times, it is extremely likely that in certain cases the
confidence interval for a particular simulation iteration may
not be statistically significant. Thus, to interpret the results
of this work, it is necessary to formulate a softer approach
to the aggregation of n-values, which will take into account
the not error-free nature of the classification algorithm. As a
softer method of aggregation, we propose to use a proba-
bilistic approach and focus not on the absolute values of the
calculated p-values but on whether they satisfy a predefined
level of significance—for example, less than 0.05. In this
case, the list of absolute p-values can be converted into a list
of 0 (not satisfying) and 1 (satisfying) and then perceived as
a binomial distribution.

P̂ = {p̂1, p̂2, . . . , p̂n}={p1 < α, p2 < α, . . . , pn < α}. (15)

For the obtained binomial distribution P̂, we can calculate a
binomial proportion confidence interval and consider it as our
soft approximation.We can further interpret it as a confidence
interval of obtaining statistically significant results with a pre-
defined confidence level at least as extreme as the observed
results of a statistical hypothesis test. The resulting formula
is defined as follows:

CIp =
nS
n
±

z
n
√
n
√
nSnF , (16)

where n = n(P̂) is the total number of experiments, nS =
n({p̂i = 1|∀p̂i ∈ P̂}) is the number of successes, nF = n({p̂i =
0|∀p̂i ∈ P̂}) = n − nS is the number of failures, and z is
the 1− α

2 quantile of a standard normal distribution (i.e., the
probit) corresponding to the target error rate α. Since p̂i = 0 is
considered as a failure and p̂i = 1 is considered as a success,
the bound of the confidence interval of aggregated p-values
CIp will be 1 in case pi < α and 0 in case pi ≥ α. For example,
if all bound of CIp are greater than 0.95 (considering α =
0.05), then the aggregated correlation CIcorr is statistically
significant.

3) INTERPRETATION OF RESULTS
If upper and lower bounds of aggregated p-values CIp are
high (generally more than 0.95), then the correlation CIcorr
is statistically significant, so we can use the calculated Pear-
son’s or Spearman’s coefficient. Several authors have offered
guidelines for the interpretation of a correlation coefficient,
so we could use the most appropriate for a particular study—
for example, guidelines by Zou et al. [55]. Strength of the
correlation should be defined by the lower bound for positive
correlation and by the upper bound for negative correlation.
Depending on the strength of the correlation, we could make
the following conclusions.

• If CIcorr is perfect, then we can confirm that there is no
impact of the misclassification bias on the calculation
of the indicator, allowing us to achieve the perfect level
of correlation between predicted and true indicators.

• If CIcorr is strong, then we can confirm that there is
a weak impact of the misclassification bias on the
calculation of the indicator, allowing us to achieve a
strong level of correlation between predicted and true
indicators.

• If CIcorr is moderate, then we can confirm that there
is a moderate impact of the misclassification bias on
the calculation of the indicator, allowing us to achieve
a moderate level of correlation between predicted and
true indicators.

• If CIcorr is weak, then we can confirm that there is
a strong impact of the misclassification bias on the
calculation of the indicator, allowing us to achieve the
weak level of correlation between predicted and true
indicators.

• If CIcorr is absent, then we can confirm that there is
a perfect impact of the misclassification bias on the
calculation of the indicator, allowing us to achieve no
correlation between predicted and true indicators.

However, considering that assumption 3 is commonly not
satisfied in practice (or it is extremely difficult to prove that
it is satisfied for a certain case), in real-life studies it would
be more correct to use the obtained conclusion as the best
case—that is, the lower estimation of the potential impact of
the classification bias on the social indicators research.

If the upper or the lower bound of aggregated p-values is
not high (generally less than 0.95), then the correlation is
not statistically significant (it might have happened just by
chance) and we should not rely upon the Pearson’s or Spear-
man’s coefficient. In other words, we cannot confirm that
there is a correlation between predicted and true indicators,
and, consequently, we cannot recommend this algorithm for
calculating the indicator based on available data.

VI. ILLUSTRATIVE EXAMPLE: SUBJECTIVE WELL-BEING
Let us say that the research domain is SWB and the research
aim is to construct a SWB indicator based on sentiment
analysis of posts from social networks. Then, the proposed
simulation approach can be employed for the assessment
of the impact of misclassification bias on social indicators
calculations. Let us also assume that we are interested in three
SWB indicators, calculated based on sentiment classification
of 1,000,000 posts distributed between 36 time intervals into
three classes: negative, neutral, and positive. The class distri-
bution is drawn from a real-life dataset of social media posts,
RuSentiment [56]: 11.65% negative posts, 64.13% neutral
posts, and 24.22% positive posts. The indicators of interest
are defined as follows.

1) SWBP2E represents the share of expressed positive
emotions relative to all emotions and is defined as

SWBP2E =
POS

POS + NEG+ NEU
, (17)

where POS, NEG, and NEU are numbers of posts clas-
sified as positive, negative, and neutral, respectively.
We assume this SWB indicator as an approximation of
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TABLE 1. Results of simulation runs.

positive affect, which is defined by ‘‘the extent to which
a person feels enthusiastic, active, and alert’’ [57].

2) SWBP2PN represents the share of expressed positive
emotions relative to the sum of positive and negative
emotions and is defined as

SWBP2PN =
POS

POS + NEG
. (18)

We also assume this SWB indicator as one of the
possible approximations of positive affect, where the
influence of neutral sentiment is not taken into account.

3) SWBP−N2E represents the difference between positive
and negative emotions divided by the number of all
emotions.

SWBP−N2E =
POS − NEG

POS + NEG+ NEU
. (19)

We assume this SWB indicator as an approximation of
life satisfaction, which takes into account the difference
between positive and negative emotions in relation to
the total number of emotions.

For the generation of synthetic time series, we applied
the nonlinear autoregressive moving average model from
the TimeSynth [58] library with random hyperparame-
ters for each simulation run. We selected five different
approaches with different classification algorithms. For each
algorithm, we provided confusion matrices for classes Y =
{negative, neutral, positive} as required by the proposed sim-
ulation approach. We chose Pearson’s correlation coefficient
as the main metric and MAE and MSE as secondary metrics.
Since the generated synthetic time series are not stationary,
we differentiated the series before calculating the correlation
coefficient. For each calculated indicator, we ran 50,0006

simulation iterations. We performed all the calculations on

6This value was obtained empirically and should not serve as a recommen-
dation for further research. An analytical calculation of the exact number of
required iterations was not carried out, since the main goal of this section is
to show an example of the application of the simulation approach, as well as
ways of interpreting the results.

the supercomputer facilities at HSE University. The univer-
sity HPC cluster occupies seventh place in rating the most
powerful computers of the CIS TOP50 and helps to solve ML
problems, population genomics, hydrodynamics, atomistic
and continuous modeling in physics, generative probabilistic
models, financial row forecasting algorithms, and other actual
problems [59]. However, having access to a supercomputer
is not a prerequisite for applying this simulation approach.
Calculations can be carried out both on a personal computer
or in cloud services—for example, Google Colab. We used
CPU nodes of the supercomputer for faster development
iterations.

A. RANDOM CLASSIFICATION ALGORITHM
The random algorithm randomly assigns sentiment classes to
posts, thereby representing the worst classification quality.
The normalized confusionmatrix for this algorithm is defined
as follows.

CMntc
=

0.3(3) 0.3(3) 0.3(3)
0.3(3) 0.3(3) 0.3(3)
0.3(3) 0.3(3) 0.3(3)

. (20)

According to the results of the simulation, the predicted index
is a constant (see Fig. 1), so the Pearson’s correlation coef-
ficient (see Table 1) is undefined for all indicators because
it has variance equal to zero. Thus, because the correlation
is undefined, we cannot confirm that there is a correlation
between predicted and true indicators. Consequently, we can-
not recommend using this algorithm for calculating the indi-
cator based on available data.

B. POOR CLASSIFICATION ALGORITHM
The poor algorithm classifies all objects with a high level of
errors. The normalized confusion matrix for this algorithm is
defined as follows.

CMntc
=

0.5 0.0 0.5
0.5 0.4 0.1
0.5 0.3 0.2

. (21)
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FIGURE 1. Example of a simulation run. Regular lines represent predicted classes and predicted indicators. Dotted lines represent true classes
distribution and true indicators.

According to simulation results, the aggregated p-values are
lower than 0.95 (see Table 1), so the correlation is not sta-
tistically significant and we should not rely upon the cor-
relation coefficient. In other words, we cannot confirm that

there is a correlation between predicted and true indica-
tors. Consequently, we cannot recommend using this algo-
rithm for calculating the indicator based on available data
(see Fig. 1).
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C. BASIC CLASSIFICATION ALGORITHM
The basic classification algorithm is a multinomial logistic
regression (MLR) method, a common baseline approach for
sentiment analysis task. As a real-life example, we selected
an MLR model presented by Ismail et al. [60]. According to
their paper, the normalized confusion matrix for their classi-
fication model is defined as follows.

CMntc
=

0.98 0 0.02
0.77 0.16 0.06
0.53 0.2 0.45

. (22)

According to the simulation results, the aggregated p-values
are higher than 0.95 (see Table 1), so we can make the follow-
ing conclusions from the given assumptions, data, algorithm,
and conditions under consideration.

• We can confirm that there is a negligible impact of
the misclassification bias on the calculation of SWBP2E ,
allowing us to achieve an almost perfect level of corre-
lation between the predicted and true indicators.

• We can confirm that there is a moderate impact of the
misclassification bias on the calculation of SWBP2PN ,
allowing us to achieve a moderate level of correlation
between the predicted and true indicators.

• We can confirm that there is a weak impact of the
misclassification bias on the calculation of SWBP−N2E ,
allowing us to achieve a strong level of correlation
between the predicted and true indicators.

However, considering the particulars of assumption 3 men-
tioned above, in real-life studies it would be more correct to
use obtained conclusions as estimations for the best cases.

D. ADVANCED CLASSIFICATION ALGORITHM
The third classification algorithm is based on one of
the most recent advances in natural language process-
ing, a pre-trained language model. As a real-life example,
we selected one of our previously developed models, ruBert-
FiT-RuReviews [61], which achieved state-of-the-art results
on the RuReviews dataset [62]. According to the paper, the
normalized confusion matrix for this classification model is
defined as follows.

CMntc
=

0.74 0.24 0.01
0.22 0.70 0.08
0.01 0.11 0.88

. (23)

According to the simulation results, the aggregated
p-values are higher than 0.95 (see Table 1), so we can make
the following conclusions for the given assumptions, data,
algorithm, and conditions under consideration.

• We can confirm that the there is a negligible impact of
the misclassification bias on the calculation of SWBP2E
and SWBP−N2E , allowing us to achieve an almost per-
fect level of correlation between the predicted and true
indicators.

• We can confirm that there is a weak impact of the
misclassification bias on the calculation of SWBP2PN ,

allowing us to achieve a strong level of correlation
between the predicted and true indicators.

However, considering the particulars of assumption 3 men-
tioned above, in real-life studies it would be more correct to
use obtained conclusions as estimations for the best cases.

E. PERFECT CLASSIFICATION ALGORITHM
The fourth classification algorithm is the perfect algorithm,
which correctly classifies all objects. The normalized confu-
sion matrix for this algorithm is defined as follows.

CMntc
=

1 0 0
0 1 0
0 0 1

. (24)

According to the simulation results, the aggregated
p-values are higher than 0.95 (see Table 1), so we can make
the following conclusions for the given assumptions, data,
algorithm, and conditions under consideration. We can con-
firm that there is no impact of the misclassification bias on
the calculation of the SWBP2E , SWBP2PN and SWBP−N2E ,
allowing us to achieve the perfect level of correlation between
predicted and true indicators. However, considering the par-
ticulars of the assumption 3 mentioned above, in real-life
studies it would be more correct to use obtained conclusions
as estimations for the best cases.

VII. CONCLUSION
In this paper we propose a simulation approach for assess-
ing the impact of misclassification bias on the calculated
social indicators. We considered only (1) indicators calcu-
lated based on the distribution of classes and (2) the case
of multiclass classification. As mentioned in earlier, the con-
tributions of this study are five-fold. Firstly, we proposed a
simulation approach for assessing the impact of classifica-
tion bias on the calculated social indicators. This approach
can be used for selecting the most appropriate classification
model for a particular social indicator and vise versa, as well
as assessing the level of correlation between the true and
predicted indicators. Secondly, we defined a formal model
of online social data for social indicators research, which
can be used further by academics. Thirdly, we proposed a
method for approximation of predicted indicator based on
the algorithm’s confusion matrix and true indicator. Fourthly,
we proposed a method for aggregation and interpretation
of multiple correlation coefficients with p-values. Lastly,
we provided illustrative examples of applying the proposed
simulation approach and making conclusions based on the
simulation outcomes. Considering that the assumptions used
in our model can be violated in practice, the outcomes of
the approach for real-life studies should be considered as
naive and optimistic. However, we believe that this study
contributes to the body of knowledge of computational social
sciences and lays the foundation for future research on
the impact of misclassification bias on calculated social
indicators.
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Future research directions on the current topic are therefore
recommended.
• Based on the assumption 2, we expected in Eq. (3) that
class distribution in a representative training dataset is
equal to the distribution in the data for analysis. For a
more accurate assessment, it is possible to consider the
class distribution in the training dataset not as a fixed
ratios but as an interval of possible values. For example,
we can consider calculating binomial proportion confi-
dence interval for each class distribution and simulate
true index based on these intervals.

• Depending on the particular formula of a social indi-
cator, different types of errors may affect the resulting
value of an indicator in a different way. For example,
mutually correcting errors (i.e., misclassification errors
that correct each other during the indicator calculation)
can negatively affect individual-level classification qual-
ity and at the same time have no impact on the calculated
indicator. A more detailed study of different types of
errors and their influence on the calculated indicator
may allow researchers to develop a more comprehensive
strategy for training classification models.

• Based on assumption 1, we expect that all objects in
the training dataset were assigned with class labels that
completely match the true underlying parameter being
annotated. However, given that quite often annotators
may disagree with each other, especially when working
with subjective concepts, it is logical to suppose that for
a model to have the same markup quality as a human,
it is not necessary to have 100% accuracy on the test
subset. Thus, further research can focus on what quality
of classification on a given dataset can be considered
equivalent to that of a human, given the metrics of
inter-rater agreement on a given dataset.
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